terça-feira, 22 de outubro de 2013

Função de 1º grau

Função de 1º grau


 
  Definição
 Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a0.
 Na função f(x) = ax + b, o número a é chamado de coeficiente de x e o número b é chamado termo constante.
 Veja alguns exemplos de funções polinomiais do 1º grau:
 f(x) = 5x - 3, onde a = 5 e b = - 3
 f(x) = -2x - 7, onde a = -2 e b = - 7
 f(x) = 11x, onde a = 11 e b = 0

Gráfico

    O gráfico de uma função polinomial do 1º grau,  y = ax + b, com a0, é uma reta oblíqua aos eixos Ox e Oy.

    Exemplo:

    Vamos construir o gráfico da função y = 3x - 1:
    Como o gráfico é uma reta, basta obter dois de seus pontos e ligá-los com o auxílio de uma régua:

    a)    Para   x = 0, temos   y = 3 · 0 - 1 = -1; portanto, um ponto é (0, -1).
    b)    Para   y = 0, temos   0 = 3x - 1; portanto, e outro ponto é .

    Marcamos os pontos (0, -1) e no plano cartesiano e ligamos os dois com uma reta.

x y
0 -1
0

    Já vimos que o gráfico da função afim y = ax + b é uma reta.
    O coeficiente de x, a, é chamado coeficiente angular da reta e, como veremos adiante, a está ligado à inclinação da reta em relação ao eixo Ox.

    O termo constante, b, é chamado coeficiente linear da reta. Para x = 0, temos y = a · 0 + b = b. Assim, o coeficiente linear é a ordenada do ponto em que a reta corta o eixo Oy.


Zero e Equação do 1º Grau

   Chama-se zero ou raiz da função polinomial do 1º grau f(x) = ax + b, a0, o número real x tal que  f(x) = 0.

   Temos:

   f(x) = 0        ax + b = 0       

   Vejamos alguns exemplos:

  1. Obtenção do zero da função f(x) = 2x - 5:
                                        f(x) = 0        2x - 5 = 0       

  2. Cálculo da raiz da função g(x) = 3x + 6:
                                        g(x) = 0        3x + 6 = 0        x = -2
       

  3. Cálculo da abscissa do ponto em que o gráfico de h(x) = -2x + 10 corta o eixo das abicissas:
    O ponto em que o gráfico corta o eixo dos x é aquele em que h(x) = 0; então:
        h(x) = 0        -2x + 10 = 0        x = 5

 
Crescimento e decrescimento

   Consideremos a função do 1º grau y = 3x - 1. Vamos atribuir valores cada vez maiores a x e observar o que ocorre com y:

x

-3

-2

-1

0

1

2

3

y

-10

-7

-4

-1

2

5

8

      Notemos que, quando aumentos o valor de x, os correspondentes
    valores de y também aumentam. Dizemos, então que a
    função y = 3x - 1 é crescente.
   Observamos novamente seu gráfico:

Regra geral:

a função do 1º grau f(x) = ax + b é crescente quando o coeficiente de x é positivo (a > 0);
a função do 1º grau f(x) = ax + b é decrescente quando o coeficiente de x é negativo (a < 0);

Justificativa:

  • para a > 0: se x1 < x2, então ax1 < ax2. Daí, ax1 + b < ax2 + b, de onde vem f(x1) < f(x2).

  • para a < 0: se x1 < x2, então ax1 > ax2. Daí, ax1 + b > ax2 + b, de onde vem f(x1) > f(x2).

Sinal

   Estudar o sinal de uma qualquer y = f(x) é determinar os valor de x para os quais y é positivo, os valores de x para os quais y é zero e os valores de x para os quais y é negativo.
    Consideremos  uma função afim y = f(x) = ax + b vamos estudar seu sinal. Já vimos que essa função se anula pra raiz . Há dois casos possíveis:

  1º) a > 0 (a função é crescente)

         y > 0       ax + b > 0         x >

         y < 0      ax + b < 0         x <

    Conclusão: y é positivo para valores de x maiores que a raiz; y é negativo para valores de x menores que a raiz

2º) a < 0 (a função é decrescente)

          y > 0  ax + b > 0            x <

         y < 0  ax + b < 0        x >


Conclusão: y é positivo para valores de x menores que a raiz; y é  negativo para valores de x maiores que a raiz.



 Espero ter ajudado voçes , :D



Referencia : http://www.somatematica.com.br/emedio/funcao1/funcao1_3.php

Postado por : Thaywan Talles

Nenhum comentário:

Postar um comentário